Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Behav Neurosci ; 138(2): 85-93, 2024 Apr.
Article En | MEDLINE | ID: mdl-38661668

Rodent behavioral studies have largely focused on male animals, which has limited the generalizability and conclusions of neuroscience research. Working with humans and rodents, we studied sex effects during interval timing that requires participants to estimate an interval of several seconds by making motor responses. Interval timing requires attention to the passage of time and working memory for temporal rules. We found no differences between human females and males in interval timing response times (timing accuracy) or the coefficient of variance of response times (timing precision). Consistent with prior work, we also found no differences between female and male rodents in timing accuracy or precision. In female rodents, there was no difference in interval timing between estrus and diestrus cycle stages. Because dopamine powerfully affects interval timing, we also examined sex differences with drugs targeting dopaminergic receptors. In both female and male rodents, interval timing was delayed after administration of sulpiride (D2-receptor antagonist), quinpirole (D2-receptor agonist), and SCH-23390 (D1-receptor antagonist). By contrast, after administration of SKF-81297 (D1-receptor agonist), interval timing shifted earlier only in male rodents. These data illuminate sex similarities and differences in interval timing. Our results have relevance for rodent models of both cognitive function and brain disease by increasing representation in behavioral neuroscience. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Time Perception , Female , Male , Animals , Time Perception/physiology , Time Perception/drug effects , Humans , Sex Characteristics , Dopamine/metabolism , Rats , Receptors, Dopamine D2/metabolism , Sulpiride/pharmacology , Quinpirole/pharmacology , Dopamine Agonists/pharmacology , Dopamine Agonists/administration & dosage , Dopamine Antagonists/pharmacology , Dopamine Antagonists/administration & dosage , Adult , Reaction Time/drug effects , Reaction Time/physiology , Benzazepines/pharmacology , Young Adult , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/antagonists & inhibitors , Memory, Short-Term/physiology , Memory, Short-Term/drug effects
2.
bioRxiv ; 2024 Feb 05.
Article En | MEDLINE | ID: mdl-37546735

The role of striatal pathways in cognitive processing is unclear. We studied dorsomedial striatal cognitive processing during interval timing, an elementary cognitive task that requires mice to estimate intervals of several seconds, which involves working memory for temporal rules as well as attention to the passage of time. We harnessed optogenetic tagging to record from striatal D2-dopamine receptor-expressing medium spiny neurons (D2-MSNs) in the indirect pathway and from D1-dopamine receptor-expressing MSNs (D1-MSNs) in the direct pathway. We found that D2-MSNs and D1-MSNs exhibited opposing dynamics over temporal intervals as quantified by principal component analyses and trial-by-trial generalized linear models. MSN recordings helped construct and constrain a four-parameter drift-diffusion computational model. This model predicted that disrupting either D2-MSN or D1-MSNs would increase interval timing response times and alter MSN firing. In line with this prediction, we found that optogenetic inhibition or pharmacological disruption of either D2-MSNs or D1-MSNs increased response times. Pharmacologically disrupting D2-MSNs or D1-MSNs also increased response times, shifted MSN dynamics, and degraded trial-by-trial temporal decoding. Together, our findings demonstrate that D2-MSNs and D1-MSNs make complementary contributions to interval timing despite opposing dynamics, implying that striatal direct and indirect pathways work together to shape temporal control of action. These data provide novel insight into basal ganglia cognitive operations beyond movement and have implications for a broad range of human striatal diseases and for therapies targeting striatal pathways.

3.
bioRxiv ; 2023 May 05.
Article En | MEDLINE | ID: mdl-37205472

Rodent behavioral studies have largely focused on male animals, which has limited the generalizability and conclusions of neuroscience research. Working with humans and rodents, we studied sex effects during interval timing that requires participants to estimate an interval of several seconds by making motor responses. Interval timing requires attention to the passage of time and working memory for temporal rules. We found no differences between human females and males in interval timing response times (timing accuracy) or the coefficient of variance of response times (timing precision). Consistent with prior work, we also found no differences between female and male rodents in timing accuracy or precision. In female rodents, there was no difference in interval timing between estrus and diestrus cycle stages. Because dopamine powerfully affects interval timing, we also examined sex differences with drugs targeting dopaminergic receptors. In both female and male rodents, interval timing was delayed after administration of sulpiride (D2-receptor antagonist), quinpirole (D2-receptor agonist), and SCH-23390 (D1-receptor antagonist). By contrast, after administration of SKF-81297 (D1-receptor agonist), interval timing shifted earlier only in male rodents. These data illuminate sex similarities and differences in interval timing. Our results have relevance for rodent models of both cognitive function and brain disease by increasing represenation in behavioral neuroscience.

4.
Behav Neurosci ; 136(3): 207-218, 2022 Jun.
Article En | MEDLINE | ID: mdl-35389678

Dopamine in the prefrontal cortex can be disrupted in human disorders that affect cognitive function such as Parkinson's disease (PD), attention-deficit hyperactivity disorder (ADHD), and schizophrenia. Dopamine has a powerful effect on prefrontal circuits via the D1-type dopamine receptor (D1DR). It has been proposed that prefrontal dopamine has "inverted U-shaped" dynamics, with optimal dopamine and D1DR signaling required for peak cognitive function. However, the quantitative relationship between prefrontal dopamine and cognitive function is not clear. Here, we conducted a meta-analysis of published manipulations of prefrontal dopamine and the effects on working memory, a high-level executive function in humans, primates, and rodents that involves maintaining and manipulating information over seconds to minutes. We reviewed 646 articles and found that 75 studies met criteria for inclusion. Our quantification of effect sizes for dopamine, D1DRs, and behavior revealed a negative quadratic slope. This is consistent with the proposed inverted U-shape of prefrontal dopamine and D1DRs and working memory performance, explaining 10% of the variance. Of note, the inverted quadratic fit was much stronger for prefrontal D1DRs alone, explaining 26% of the variance, compared to prefrontal dopamine alone, explaining 10% of the variance. Taken together, these data, derived from a variety of manipulations and systems, demonstrate that optimal prefrontal dopamine signaling is linked with higher cognitive function. Our results provide insight into the fundamental dynamics of prefrontal dopamine, which could be useful for pharmacological interventions targeting prefrontal dopaminergic circuits, and into the pathophysiology of human brain disease. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Dopamine , Schizophrenia , Animals , Dopamine/pharmacology , Memory, Short-Term/physiology , Prefrontal Cortex/physiology , Receptors, Dopamine D1/metabolism
...